

 $dX_1/dt = v_0 - v_1$ $dX_2/dt = 2v_1 - v_2 - v_9$ $dX_3/dt = v_2 - v_3 + v_4 - v_5$ $dX_A/dt = v_3 - v_A$ $dNADH/dt = v_2 - v_3 + v_4 + 4v_5 - v_6$ $dATP/dt = -2v_1 + 2v_2 + 3v_6 - v_7$

Systems Biology in Practice

GEFÖRDERT VOM

ICSB 2006, Yokohama, Oct 9-13, 2006

Dynamic Modeling of Stress Response of Yeast Cells - Timing of Events

Edda Klipp Max Planck Institute for Molecular Genetics Ihnestr. 73, 14195 Berlin, Germany http://www.molgen.mpg.de/~ag_klipp

Timing of Stress Response

- Response to Osmotic Stress
- Crosstalk of Pheromone Pathway and Filamentous Growth Pathway
- Cell Cycle and its Regulation by Signaling Pathways

Signaling Pathways in Baker's Yeast

Experiments w.r.t. Stress Response

Stress response on transcriptional level Stress-activated Hog1 – a selective transcription elongation factor for genes responding to osmotic stress Activated Signal Transduction Kinases Frequently Occupy Target Genes

Gasch et al., 2000, Mol Cell Biol

Proft et al., 2006, Molecular Cell

Pokholok,..., Young, 2006, Science

Yeast: Response to Osmotic Stress

- Active regulation of cellular volume
- > Accumulation of glycerol as osmolyte
- Closure of the aquaglyceroporin Fps1 (a glycerol channel)
- "Genome remodeling" global change of expression pattern
- Regulation of cell cycle progression

Modeling Pipeline

Construct network from literature data and experts' knowledge

Osmostress Response – Full Model

Klipp, Nordlander, Krüger, Gennemark & Hohmann, Nature Biotechn, 2005

The Standard Experiment

Wild Type Cells, shock with 0.5 M NaCl

Klipp et al., Nature Biotechn, 2005

Osmotic stress model: Test cases

ICSB 2006, Yokohama

Osmotic stress: Different stress levels

Osmotic stress response: What is the impact of specific components over time ?

ICSB 2006, Yokohama

Signaling Pathways in Baker's Yeast

Pheromone Response

Kofahl & Klipp, Yeast, 2004

Simulation results:

	Osmotic shock		Pheromone	N-depletion	Glucose sensing
Recentor man	1	*	+	+	+
activation III	Int Sin1	Sho1	Ste2/3	Cd 34 Sho1	Gpr1
	1 4	2/	(a) (a)	T i i	+
Apstream	I Geo		G (600)	4 Cit 42 + Rat2)+(<u>64</u> 2)
ontrol	341 6		- Court	(Bett)	AC
GAP kinase	502	1	50+5 - 50x2	Stort D	(AMP) - (Pole)
ascage	(1400	0	- (hal)	Kut	Boy
	18	1	I	I	4 21
Transcription	+	000	L	I	
actor activation	(Mun2,4)	Sul) Smp	D Carti Serio	(Tecl Gell)	301 (000)
- Activity	n.e.a. 1.3	hbiton, e.g	Compies	Potential	
Phospho	nylation + D	ephosphorys	don Formation	Crosstak;	4

Integration assessment

Integration of Signaling Pathways

Time/min

Yeast Cell Cycle

In collaboration with Alberghina lab, University Milano-Biccoca

Network controlling the G1 to S transition

G1 to S transition: Model results

Reproduction of experiments

Explanation of critical cell size

Relevant genotype	Estimated Ps	
WT GLUCOSE	1.54	
cin3∆	-	à
GAL-CLN3	1.26	
far1∆	1.44	
GAL-FAR1	-	
whi5∆	1.20	
GAL-WHI5	3.31	
sic1∆	6.57	
GAL-SIC1	1.50	
WT ETHANOL	1.20	

Growth rate Far1 production Cln3 production Far1 initial concentration Cln3 initial concentration Binding value Sic1/Cdk1-Clb5,6_{evt}

Prediction of mutant phenotypes

Population effects

Escoté et al., Nature Cell Biol, 2004

Timing of Signal Activation Determines Effect on Cell Cycle Progression

Timing of Signal Activation Determines Effect on Cell Cycle Progression

ICSB 2006, Yokohama

Tool Development

SBMLmerge Tool for model integration based on SBML representation

SBMLannotate \rightarrow compounds and reactions

SBMLcheck \rightarrow for consistency and SBML compatibility

SBMLmerge \rightarrow merges valid models

SBML2dot \rightarrow graphical output

http://sysbio.molgen.mpg.de/sbmlmerge/ Schulz, Uhlendorf, Liebermeister & Klipp, 2006, Genome Informatics

SBML-PET Tool for parameter estimation based on SBML representation

- ➢ SBML import and export
- Various types of data
- Various mathematical expressions
- Discontinuous state changes
- Supports Events

http://sysbio.molgen.mpg.de/SBML-PET/ Zi & Klipp, 2006, Bioinformatics

Data Integration

Assignment of Kinetics

Reaction network

- + thermodynamic info
- + kinetic info from DB
- + Convenience kinetics

1. Parameter distribution

- + metabolomic data
- + genomic data

2. Parameter distribution

Liebermeister & Klipp, submitted

Conclusions

- Mathematical models of cellular processes allow for a testable representation of experimental knowledge.
- > Models allow integration of diverse data and information.
- > Modeling reveals regulatory properties of cellular network.

The temporal organization of cellular events is critical to understand stress response – besides network structure and parameter values.

 $\begin{array}{l} dX_1/dt = v_0 - v_1 \\ dX_2/dt = 2v_1 - v_2 - v_9 \\ dX_3/dt = v_2 - v_3 + v_4 - v_5 \\ dX_4/dt = v_3 - v_4 \\ dNADH/dt = v_2 - v_3 + v_4 + 4v_5 - v_6 \\ dATP/dt = -2v_1 + 2v_2 + 3v_6 - v_7 \end{array}$

Systems Biology in Practice

Kinetic Modeling Group

Acknowledgements

Wolfram Liebermeister

Jörg Schaber BS01

Simon Borger René Hoffmann Bente Kofahl Sebastian Schmeier Judith Wodke Anselm Helbig Marija Cvijovic Zhike Zi Christian Waltermann Jannis Uhlendorf Marvin Schulz Axel Kowald MPI Molecular Genetics

Roland Krüger Reinhart Heinrich Humboldt University Berlin Stefan Hohmann Bodil Nordlander Per Sunnerhagen Thomas Nyström Göteborg University

Peter Gennemark Chalmers University Göteborg

Lilia Alberghina

Matteo Barberis **BY14**

Romilde Manzoni University Milano Biccoca

Matthias Peter Fabian Rudolf Serge Peletier ETH Zürich

Francesc Posas Miguel-Angel Andrade Nadal U Pompeu Fabra Barcelona

Funding is appreciated from

in Practice

Concepts, Implementation and Application

Textbook on Systems Biology By Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H WILEY-VCH, 2005

$$\begin{split} dX_1/dt &= v_0 - v_1 \\ dX_2/dt &= 2v_1 - v_2 - v_9 \\ dX_3/dt &= v_2 - v_3 + v_4 - v_5 \\ dX_4/dt &= v_3 - v_4 \\ dNADH/dt &= v_2 - v_3 + v_4 + 4v_5 - v_6 \\ dATP/dt &= -2v_1 + 2v_3 + 3v_6 - v_7 \end{split}$$

Acknowledgements

http://www.molgen.mpg.de/~ag_klipp

ICSB 2006, Yokohama