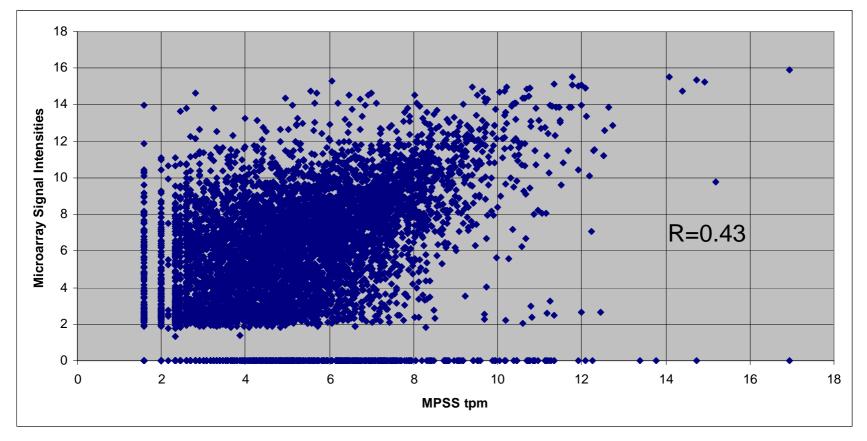
The transcriptome as a window into pathogenesis of type 1 diabetes

Nat Goodman Institute for Systems Biology ICSB 2006

Type 1 diabetes research at ISB

- Projects in this talk
 - 1) Beta cell gene atlas
 - 2) Gene regulatory network driving beta cell pathology
- Other projects
 - 3) T1DBase http://T1DBase.org
 - 4) Fine scale genetic map of human MHC Roach JC et al. Am J Hum Genet. 2006 Oct. PMID 16960798
 - 5) Regeneration of beta cell function
 - 6) Biomarker discovery


Outline of project 1. Beta cell gene atlas

Rationale Basal gene expression in beta cells defines normal function and provides baseline for abnormal states.

Aims

- A. Deep transcriptome analysis of human islets by Massively Parallel Signature Sequencing (MPSS)
- B. Integrate MPSS and microarray data (mostly previously published)
- C. Generate atlas: comprehensive list of genes basally expressed in beta cells, islets, and cell lines across different species

Comparison of MPSS vs Microarray Data from Untreated Control Islets

Advantages of MPSS:

- Unbiased : The method does not depend upon prior knowledge of the genome
- Sensitive : Library size at least 1,000,000
- Quantitative : No prior distribution

Project 1. β cell transcriptome

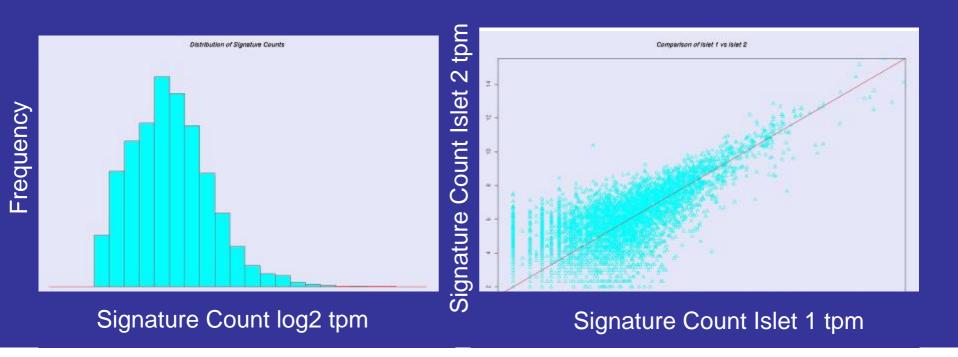
Aim A. Performance of two MPSS analysis of untreated human pancreatic islets

Two islet samples - 1,051,000 and 1,313,239 signatures

Distinct signatures identified: 20,796

Signature mapped to a unique sequence: **75%**

Signatures high quality: 63.8%


Signatures > 5 tpm Islet 1: 5,855 Islet 2: 6,221

Total # of genes detected: 7,640

Total # of transcription factors: 409

Distribution of MPSS Signature Counts

Scatter Plot of Sample1 vs Sample2

Min. 1st Qu. Median Mean 3rd Qu. Max. 5.0 18.0 45.0 210.7 110.0 142700.0

Signature Counts of the Most Abundant Transcripts

	Islet 1	Islet 2	Average
Gene Id Symbol Gene Description	(tpm)	(tpm)	(tpm)
	119627	144213	131920
5068 REG3A regenerating islet-derived 3 alpha	28560	47369	37964
5068 REG3A regenerating islet-derived 3 alpha 5967 REG1A regenerating islet-derived 1 alpha	44875	17861	31368
2641 GCG glucagon	15634	37024	26329
5645 TRYP2 protease, serine, 2 (trypsin 2)	34149	7784	20966
2778 GNAS GNAS complex locus	14405	22141	18273
6750 SST somatostatin	22176	12652	17414
2495 FTH1 ferritin, heavy polypeptide 1	19839	9480	14659
2495 FTH1 ferritin, heavy polypeptide 1 1504 CTRB1 chymotrypsinogen B1	21986	5727	13856
4535 NADPH Mitochondrial NADH dehvdrogenase 1	17556	9210	13383
4535 NADPH Mitochondrial NADH dehydrogenase 1 1915 EEF1A eukaryotic translation elongation factor 1a	9884	11889	10886
6137 RPL13 ribosomal protein L13	6656	7261	6958
5968 REG1B regenerating islet-derived 1 beta	9803	3269	6536
23521 RPL13A ribosomal protein L13a	6471	6539	6505

Over-represented Biological Processes GO terms In Top 10 % of MPSS results

GO term	Description	P value*	n**
GO:0008104	protein localization	0.016322	56
GO:0043069	negative regulation of programmed cell death	0.016322	22
GO:0006091	generation of precursor metabolites and energy	0.016322	53
GO:0042775	ATP synthesis coupled electron transport	0.018646	9
GO:0051234	establishment of localization	0.019127	179
GO:0006457	protein folding	0.020346	27
GO:0050875	cellular physiological process	0.022832	514
GO:0009145	purine nucleoside triphosphate biosynthesis	0.022832	13
GO:0009201	ribonucleoside triphosphate biosynthesis	0.022832	13
GO:0009206	purine ribonucleoside triphosphate biosynthesis	0.022832	13
GO:0009142	nucleoside triphosphate biosynthesis	0.029385	13
GO:0045184	establishment of protein localization	0.029385	53

*P value = Fisher's Exact Test corrected by "Benjamini-Yekuteli" procedure **n = number of genes with the assigned GO term Project 1.

 β cell transcriptome

Under-represented Biological Processes GO terms In Top 10 % of MPSS results

GO term	Description	P value*	n**
GO:0006351	transcription, DNA-dependent	2.17E-06	46
GO:0006355	regulation of transcription, DNA-dependent	2.95E-06	45
GO:0006350	transcription regulation of nucleotide and nucleic acid	3.25E-05	56
GO:0019219	•	5.17E-05	55
GO:0045449	regulation of transcription	5.23E-05	54
GO:0031323	regulation of cellular metabolism	0.000748	65
GO:0019222	regulation of metabolism	0.002163	70
GO:0006139	nucleotide and nucleic acid metabolism	0.022669	114
GO:0006468	protein amino acid phosphorylation	0.048571	10

Project 1. β cell transcriptome

*P value = Fisher's Exact Test corrected by "Benjamini-Yekuteli" procedure **n = number of genes with the assigned GO term

Signature Counts of Some Beta Cell Specific Transcription Factors

	Islet 1 (tpm)	Islet 2 (tpm)
MafA	163	32
IPF1	38	48
NKX6.1	67	90
PAX6	418	703

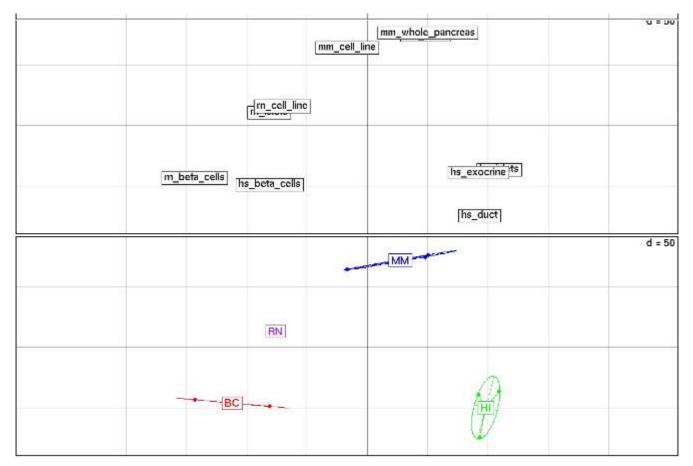
Pancreatic Islet Enriched Genes in MPSS datasets

Comparison of our MPSS data with 32 human tissues: An atlas of human gene expression from massively parallel signature sequencing. Jongeneel et al Genome Res 2005 15:1007-1014

Highly-enriched in pancreatic islets: **950 genes**

Genes-depleted in islets: **255 genes**

Definition of enrichment: 4 standard deviations from mean


Aim B. Integrate MPSS and array data

Number of microarrays: **402** Number of studies: **38** Number of different platform types: **21** Species represented = Human, Rat, Mouse Tissue types = Primary beta cells, pancreatic islets, exocrine pancreas, duct cells, whole pancreas, cell lines

New study: FACS-purified rat beta cells and insulin-producing INS-1 cells using latest Affy chip

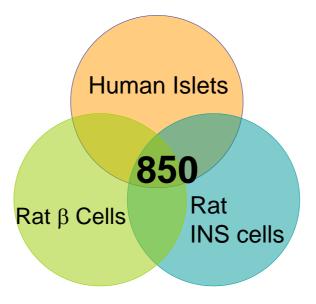
Note: Little data from human beta cells No data from mouse beta cells

Principal Component Analysis of Tissue Profiles

Observations:

- 1) Mouse tissues distinct
- 2) Human and rat beta cells are more related to each other than the rest of the tissues. But remember: little human and no mouse data for beta cells

Aim C. Generate atlas


Gene expression in pancreas:

Endocrine	Exocrine	Duct cells	Rat Beta cells	Rat INS cells
9779	11261	4347	7993	7594

Algorithm to obtain the beta cell specific and enriched genes

- 1. Normalize data to express genes in rank percentiles
- 2. Islet Enriched Genes 5-10% difference in ranks
- 3. Get the intersection of #2 and the primary beta cells and cell lines

Genes enriched in islets vs exocrine and duct cells: 2025

Localization and Secretion Predictions (Secretome 3.0 – TMHMM 2.0)

TransMembrane	114
Secreted	228

Access via T1DBase

http://T1DBase.org/page/AtlasHome

Affymetrix Results - Expression val gene were ranked on a scale of 0- expression level are as follows:	
No expression	0-25
Low	25-50
Moderate	50-75
Enriched	75-100

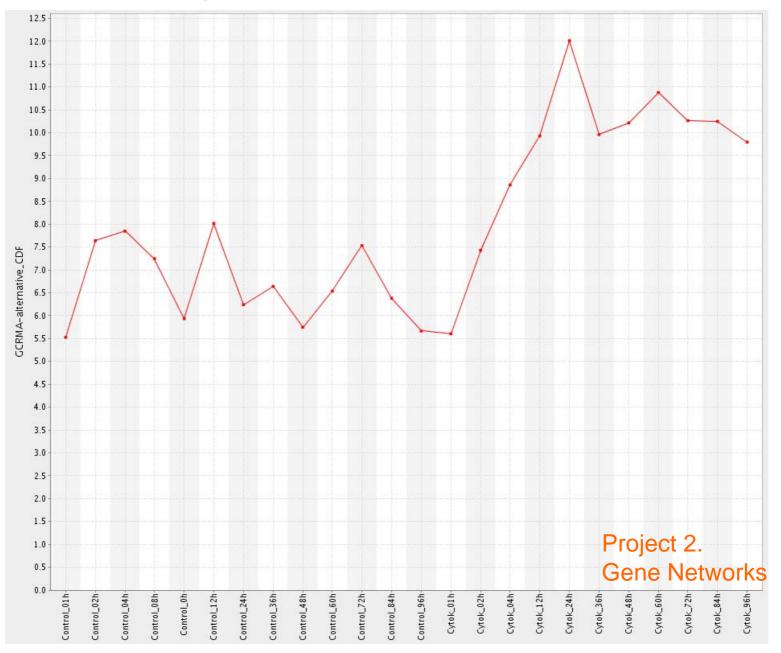
MPSS Results - Signature count was averaged over two runs. Co expression level are as follows:	
No data (nd)	0
Low	0-20
Moderate	20-100
Enriched	100+

			Human			Mou	ise		Rat	
	primary beta cells	pancreatic islets	Pancreatic Islets MPSS	exocrine pancreas	ductal cells	pancreatic islets	whole pancreas	primary beta cells	pancreatic islets	beta cell line
<u>INS</u>	Υ	Υ	Υ	Υ	N	Υ	Y	Y	Υ	Y
IPF1	Y	Y	Y	Y	Y	Υ	Υ	Υ	Y	Y
NOS2A	Y	Y	nd	Y	Y	Y	Υ	N	Y	Y
TAP1	N	Υ	Y	Y	Υ	Y	Y	Υ	N	Y
<u>TAP2</u>	Y	Y	Y	Y	Υ	Y	Y	Y	N	Υ

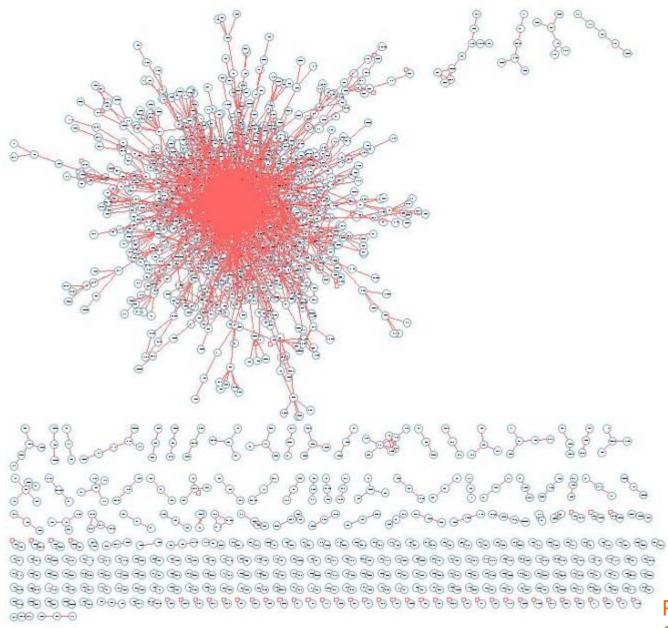
Conclusions

- Islets have distinct profile compared to other tissues
- Globally mouse tissues are close to each other, human and rat beta cells have similar profiles.
 Note: we have no data for mouse beta cells
- 850 <u>human beta cell enriched</u> genes contain candidate biomarkers for human beta cells
- Atlas can be used for many purposes including prediction of beta cell function, disease progress etc.

Project 2. Gene regulatory network driving beta cell pathology


- Time course gene expression study of cytokineinduced beta cell dysfunction and death
- Human islets. *n*=1 today
- Proinflammatory cytokines IL-1 β , IFN- γ known to be synergistically cytotoxic to beta cells
 - Other known killing agents not studied: TNF- α , IL-6, viral infection
- Cytokines activate many genes and transcription factors

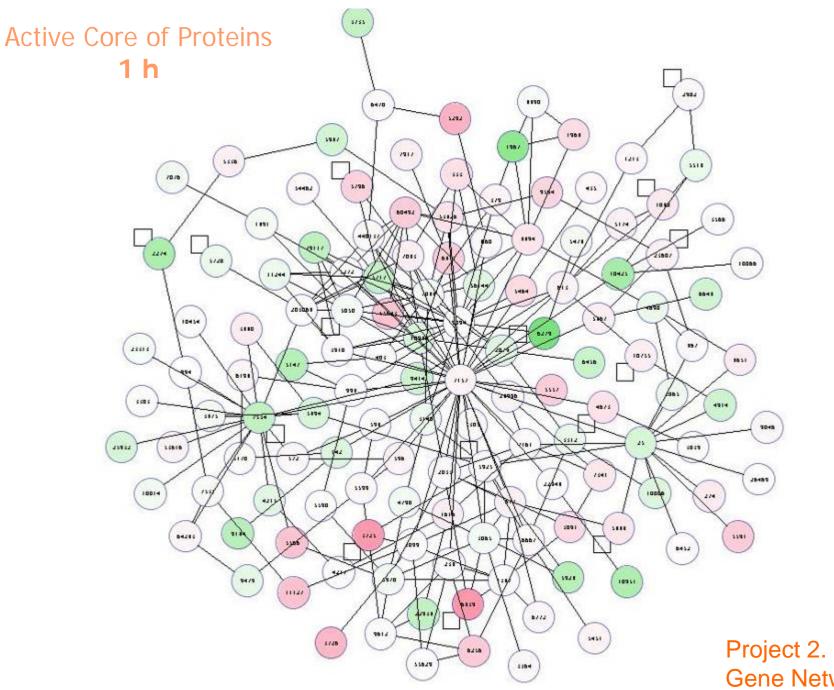
Protocol


	1h	2h	4h	8h	12h	24h	36h	48h	72h	84h	96h
Control	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
IL1+IFN	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х

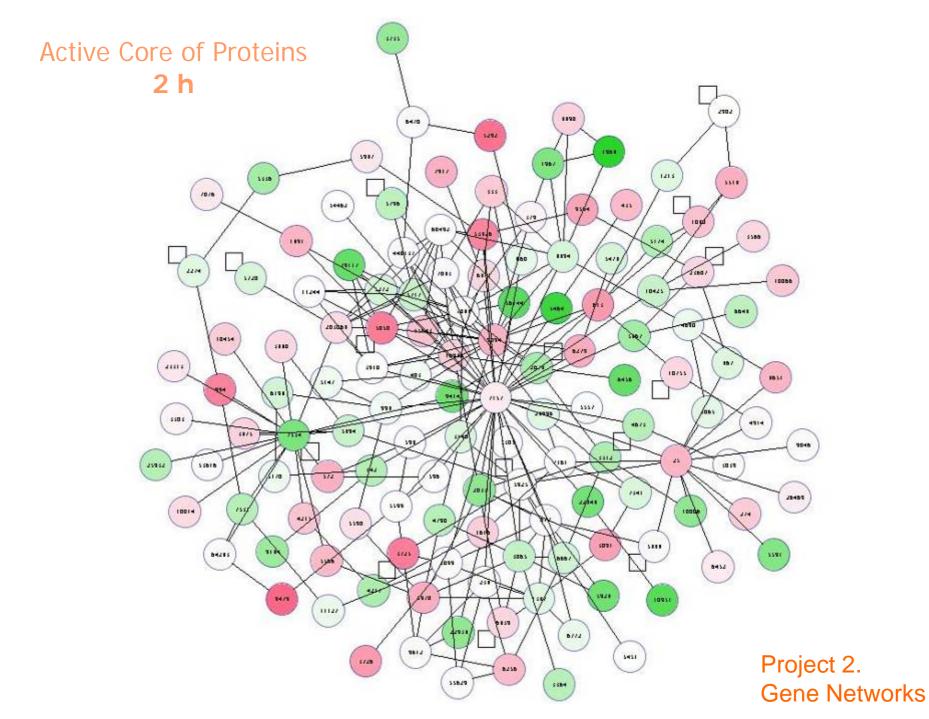
Project 2. Gene Networks

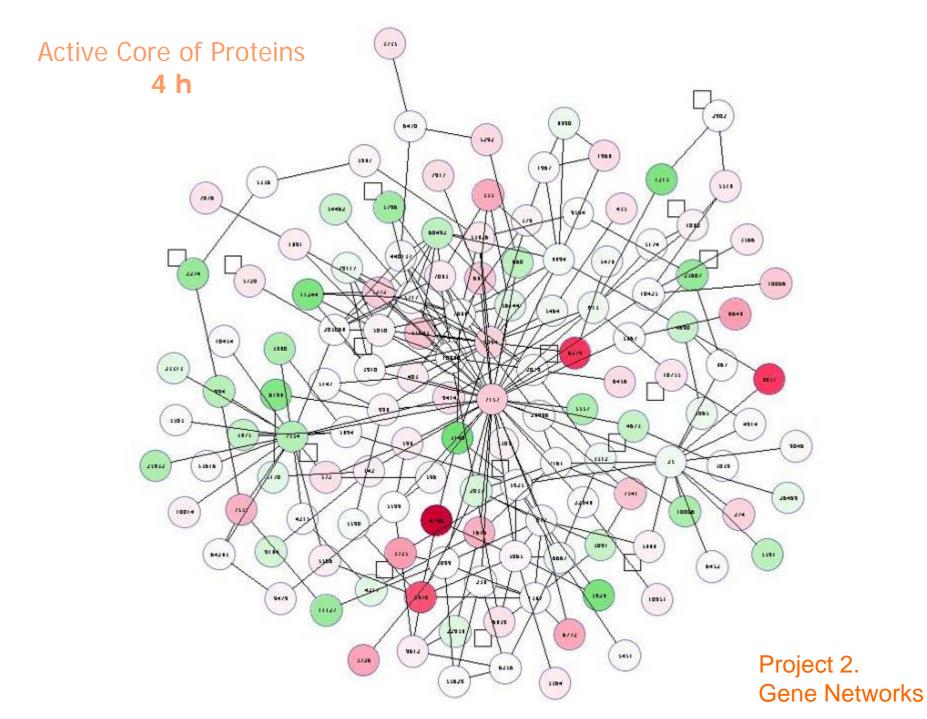
STAT1 gene expression in response to IL-1 β +IFN- γ

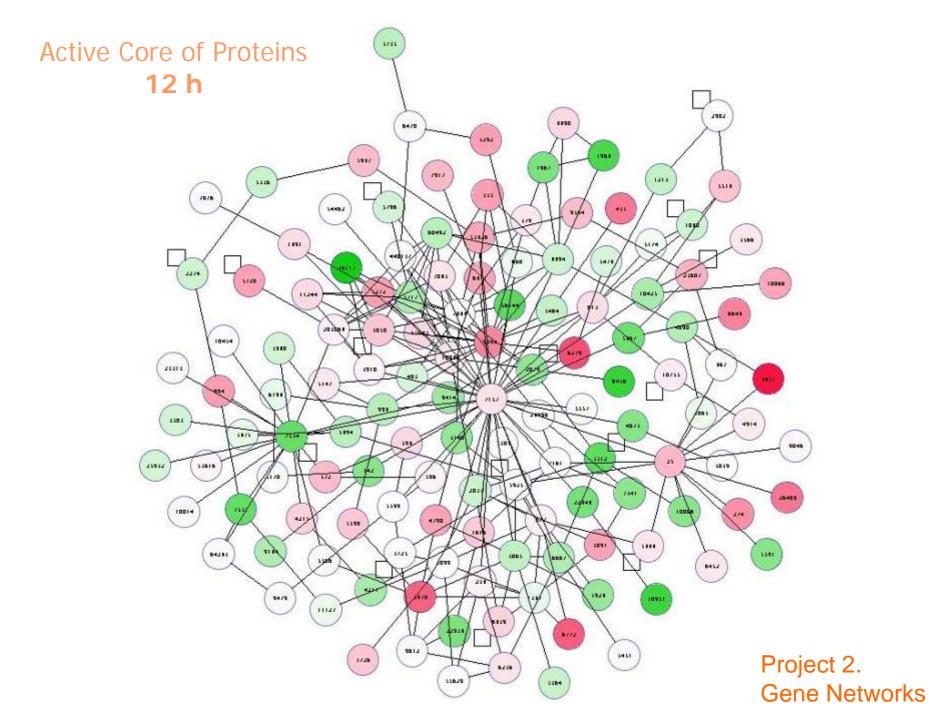
Protein-Protein Interaction Networks

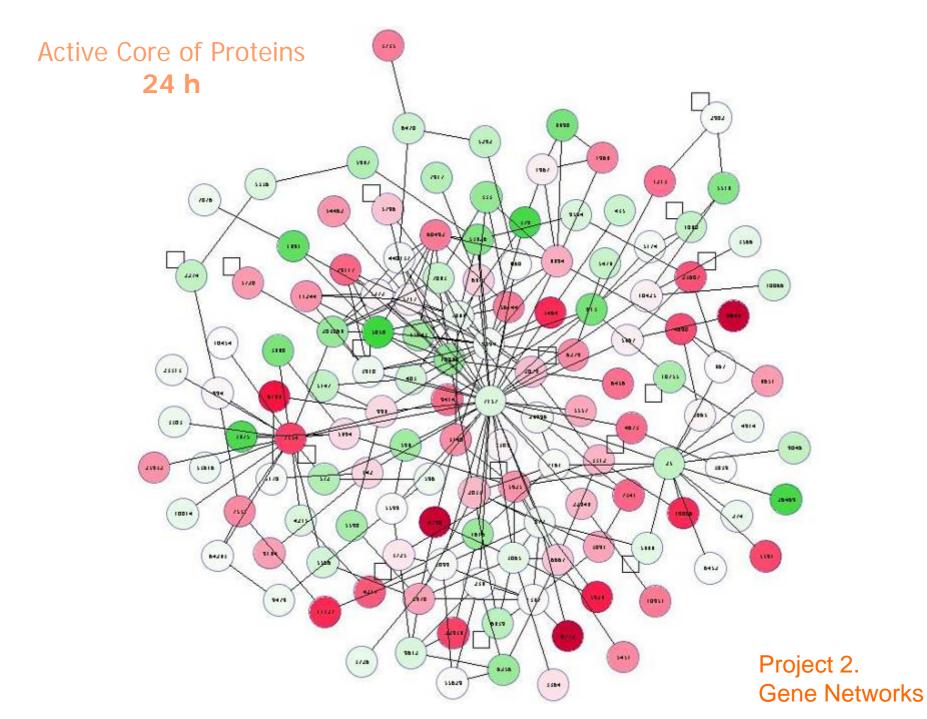


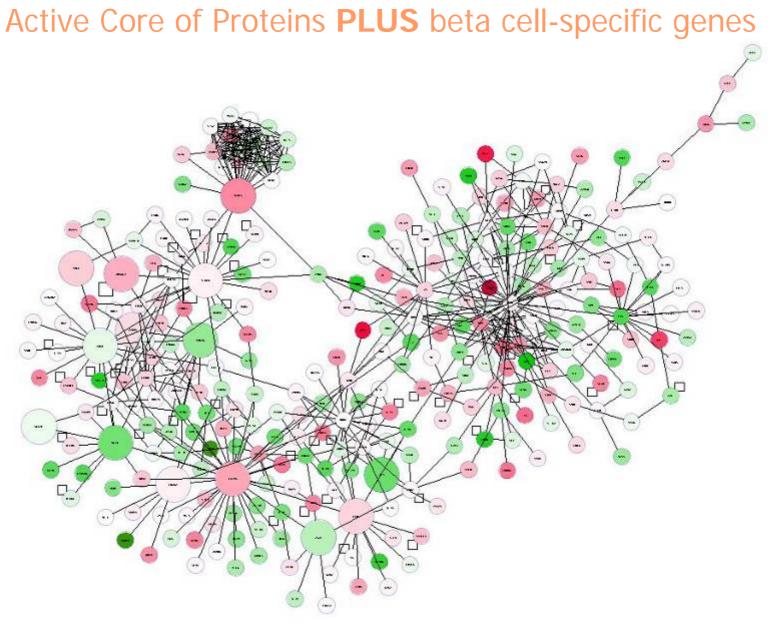
Project 2. Gene Networks


Active modules in beta cell dysfunction and death


Sector Sector	11111		and the second second	0		Co	nditions vs	Pathways					Same and the second
work	Size	Score	1124	cytok6	cytokitif	cytok24	ifn24	ifnpic24	pic24	ffn6	pic6	finpic6	
1	63	10.058			10				2 ANT				
2	29	9.736											
з	46	9.387											
4	83	9.28											
5	45	9.273											
6	36	9.2							2	()			
7	32	9.094					-		6				
8	37	9.076											
9	38	9.018											
10	47	8.946											
11	32	0.057											
12	54	8.63							6 D				
13	49	8.773				2			S	2			
14	40	8.708											
15	43	8.672					- 1		N 31				
16	30	8.648				2.0							
17	34	8.636											
10	76	0.589											
19	41	8.589	1.0						6				
20	32	8.519											
21	36	8.509							6	2			
22	50	8.506											
23	56	8.48											
24	28	8,476											
25	40	8.336											
26	62	8.332											
27	47	8.313	<u></u>				- 1		1				
28	37	8.31											
29	50	8.307											
30	35	8.26								-			
31	72	8.239					-		8	2			
32	53	8.229										-	
33	36	8.221											
34	51	8.204								· · · · · ·			
35	33	8.183											
36	40	8.181											
37	25	8.175							_				
38	22	8.171	_		-	-							
39	36	8.124			N.	-				-	_		
40	55	8.042											
41	26	8.038											
42	59	8.005	_										
43	50	7.991											
44	48	7.987	_								_		
45	55	7.978				-	0						
46 47	28	7.954					_						
9.6	30	7.939									_		


Project 2. Gene Networks




Gene Networks

Project 2. Gene Networks

Conclusions

- Core network activated in response to all killing agents
- Time series shows progressive activation
- 24h is critical time point for these islets
- Beta cell enriched network connected to core contain genes related to insulin secretion among others
- Role of beta cell enriched network in pathology yet to be determined: cause or effect?

Acknowledgements

ISB

- Lee Hood
- Burak Kutlu
- Bruz Marlzhof
- Pamela Troisch
- Paul Shannon
- T1DBase team
 Erin Helton
 David Burdick
 Victor Cassen
 Chris Cavnor
 Karen Friery
 Sarah Killcoyne

- Universite Libre de Bruxelles
 - Decio Eizirik
 - Pierre Pirot
 - Daisy Flamez
- University of Uppsala
 - Nils Welsh
 - Olle Korsgren

We are : Incredibly Speedy Biologists !!

Beat the Bridge 2006 Seattle

